

MODULE SPECIFICATION

Module Title	: Ro	Robotics			Level: 5		5	Credit Value:	2	0
Module cod	EN	ENG53D Is this a new module?		VES 1			de of module ng replaced:		IG52H	
Cost Centre: GEAA			JACS3 cod	de:		H7	730			
Trimester(s) in which to be 1 & 2			With effect Septe			ember 18				
School: Faculty of Arts, Science and Technology				/lodule .eader:		Andrew	Sharp			
Scheduled learning and teaching hours										60 hrs
Guided independent study			140 hrs							
Placement				0 hrs						
Module duration (total hours) 200 hrs				200 hrs						
Programme(s) in which to be offered BEng (Hons) Automation Engineering BEng (Hons) Mechanical Manufacturing							Co ✓ ✓	ore	Option	
Pre-requisites										

None

Office use only	
Initial approval February 17	
APSC approval of modification Sept 18	Version 1
Have any derogations received Academic Board approval?	Yes ✓ No □

MODULE SPECIFICATION

Module Aims

To develop a fundamental understanding of the principles of operation of automated equipment with particular reference to industrial robots and their application in a variety of industries. Understand that robots are mechatronic machines that can perform tasks by acquiring its own inputs from sensors make decision through pre-programmed instructions.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At	the end of this module, students will be able to	Key Skills		
1		KS1	KS6	
	Create machine designs to implement Robotic Kinematics and Dynamics	KS3	KS10	
		KS4		
2	Select appropriate sensors for a given automation	KS2	KS9	
	application. Introduction to sensors, vision systems and end effector design.	KS4		
	enector design.	KS6		
	Use Robot programming languages: Including use of	KS1	KS6	
3	methods of programming through having the opportunity to	KS3	KS9	
	programme and deploy an industry standard robot.	KS4	KS10	
	Apply a systematic approach to analyse robotic problems and	KS1	KS10	
4	to design robotic systems, and develop the basic knowledge and skills to build and operate industrial robotic systems and to state the advantages and disadvantages of their	KS2		
		KS3		
	deployment.	KS6		

Derogations

A derogation from regulations has been approved for this programme which means that whilst the pass mark is 40% overall, each element of assessment (where there is more than one assessment) requires a minimum mark of 30%.

Assessment:							
Assessment is 50% examination 50% report. The examination will assess the student on robotic design, kinematics and dynamics. The report will analyse either the systems sensor, drive or end effectors, inclusive of the practical element which will be the design and implementation of software to control a robotic system.							
Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)		
1	1	Examination	50%	2 hrs			
2	2,3&4	Report	50%		2000		

Learning and Teaching Strategies:

The module will be presented to students through a specified series of lectures assisted by notes given to students. Demonstrations will also be arranged to show the operation of a robotic system. Develop software using industrial standard software to control an industrial robot. A practical assignment exercise will be devised to enhance the students' learning.

Syllabus outline:

- Introduction to robotics: types and applications and robotic design i.e. Degrees of freedom; actuators and power transmission and robot accuracy.
- Robotics in automation: classification of robots; fixed and flexible automation; safety issues and risk assessment.
- Robotic Kinematics and Dynamics: Positions, Orientations and frames, Mappings: Changing descriptions from frame to frame, Operators: Translations, Rotations and Transformations. Forward and inverse Kinematics of Six Degree of Freedom Robot Arm and Robot Arm dynamics.
- Sensors: Transducers, tactile and proximity sensors; cameras; force sensing and Kinetiq Teaching.
- Drives used in robotic arms i.e. Stepper, Brushed DC Servo and Brushless DC Servo.
- Machine control: feedback control; servomechanisms and embedded controllers.
- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators
- Robot End Effectors: drive system for grippers-Mechanical adhesive, vacuum, magnetic grippers.
- Analysis of robotic design problems and development of problem statements. Systematic and integrated robotic system design.

MODULE SPECIFICATION

Bibliography:

Essential reading

Glaser, A. (2008) Industrial Robotics: How to Implement the Right System for Your Plant, Industrial Press, Inc;

Other indicative reading

Deb, Sankha (2009) Robotics Technology and Flexible Automation, Tata4 McGraw Hill Craig, John (2013) Introduction to Robotics: Mechanics and Control, Pearson 3rd Edition